Advances in Stem Cell Applications for Wound Healing
DOI:
https://doi.org/10.63623/e33gn241Keywords:
Stem cell therapy, Wound healing, Skin regeneration, Inflammation, InjuryAbstract
With the growing use of stem cells in burn treatment, their notable therapeutic effects, ease of accessibility (e.g., peripheral blood stem cells), and broad availability have significantly elevated their research value. This review explores the role of stem cell-based strategies in advancing drug discovery for wound healing, with emphasis on their underlying mechanisms, therapeutic potential, and translational applications. Wound healing proceeds through haemostasis, inflammation, proliferation, and remodelling-processes mediated by cellular events, cytokines, and key pathways such as NF-κB, PI3K/Akt/mTOR, and Wnt/β-catenin. Stem cells play a pivotal role in this process by promoting angiogenesis, extracellular matrix (ECM) formation, and collagen remodelling, while also modulating inflammation and enhancing tissue regeneration through the secretion of TGF-β and VEGF. Stem cell-based interventions represent a promising avenue for drug development in wound healing, offering solutions to unmet clinical needs through innovative therapies and personalized medicine. This review highlights recent progress and outlines future directions in this rapidly evolving field.
References
[1]Hall PA, Watt FM. Stem cells: The generation and maintenance of cellular diversity. Development. 1989, 106(4), 619-633. DOI: 10.1242/dev.106.4.619
[2]Trosko JE, Chang CC. Factors to consider in the use of stem cells for pharmaceutical drug development and for chemical safety assessment. Toxicology. 2010, 270(1), 18-34. DOI: 10.1016/j.tox.2009.11.019
[3]Abud AP, Zych J, Reus TL, Kuligovski C, de Moraes E, Dallagiovanna B, et al. The use of human adipose-derived stem cells- based cytotoxicity assay for acute toxicity test. Regulatory Toxicology Pharmacology. 2015, 73(3), 992-998. DOI: 10.1016/j.yrtph.2015.09.015
[4]Chang JK, Li CJ, Wu SC, Yeh CH, Chen CH, Fu YC, et al. Effects of anti-inflammatory drugs on proliferation, cytotoxicity, and osteogenesis in bone marrow mesenchymal stem cells. Biochemical Pharmacology. 2007, 74(9), 1371-1382. DOI: 10.1016/j.bcp.2007.06.047
[5]Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells: Opportunities for disease modeling and drug discovery. Nature Reviews Drug Discovery. 2011, 10(12), 915-929. DOI: 10.1038/nrd3577
[6]Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell. 2008, 134(5), 877-886. DOI: 10.1016/j.cell.2008.07.041
[7]Braam SR, Passier R, Mummery CL. Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends in Pharmacological Science. 2009, 30(10), 536-545. DOI: 10.1016/j.tips.2009.07.001
[8]Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupien A, Mikiciuk-Olasik E, Huttunen KM. Metformin-A future therapy for neurodegenerative diseases: Theme: Drug discovery, development and delivery in Alzheimer's disease. Guest Editor: Davide Brambilla, Pharmaceutical Research. 2017, 34(12), 2614-2627. DOI: 10.1007/s11095-017-2199-y
[9]Liu WW, Deng YG, Liu Y, Gong WR, Deng WB. Stem cell models for drug discovery and toxicology studies. Journal of Biochemical and Molecular Toxicology. 2013, 27(1), 17-27. DOI: 10.1002/jbt.21470
[10]Santhanam N, Kumanchik L, Guo X, Sommerhage F, Cai Y, Jackson M, et al. Stem cell-derived phenotypic human neuromuscular junction model for dose-response evaluation of therapeutics. Biomaterials. 2018, 166, 64-78. DOI: 10.1016/j.biomaterials.2018.02.047
[11]van Berlo D, Nguyen VV, Gkouzioti V, Leineweber K, Verhaar MC, van Balkom BW. Stem cells, organoids, and organ-on-a- chip models for personalized in vitro drug testing. Current Opinion in Toxicology. 2021, 28, 7-14. DOI: 10.1016/j.cotox.2021.08.006
[12]Liang N, Trujillo CA, Negraes PD, Muotri AR, Lameu C, Ulrich H. Stem cell contributions to neurological disease modeling and personalized medicine. Progress in Neuro Psychopharmacology and Bioogical Psychiatry. 2018, 80, 54-62. DOI: 10.1016/j.pnpbp.2017.05.025
[13]Paik DT, Chandy M, Wu JC. Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacological Reviews. 2020, 72(1), 320-342. DOI: 10.1124/pr.116.013003
[14]Guo S, Dipietro LA. Factors affecting wound healing. Journal of Dental Research. 2010, 89(3), 219-229. DOI: 10.1177/0022034509359125
[15]Stroncek JD, Reichert WM. Overview of wound healing in different tissue types. Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment. 2008, 1, 3-41. PMID: 21204404
[16]Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regeneration. 2008, 16(5), 585-601. DOI: 10.1111/j.1524-475X.2008.00410.x
[17]Mieczkowski M, Mrozikiewicz-Rakowska B, Kowara M, Kleibert M, Czupryniak L. The problem of wound healing in diabetes-from molecular pathways to the design of an animal model. International Journal of Molecular Science. 2022, 23(14), 7930. DOI: 10.3390/ijms23147930
[18]Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor Perspectives in Biology. 2009, 1(6), a001651. DOI: 10.1101/cshperspect.a001651
[19]Stolzenburg-Veeser L, Golubnitschaja O. Mini-encyclopaedia of wound healing: Opportunities for integrating multi-omic approaches into medical practice. Journal of Proteomics. 2018, 188, 71-84. DOI: 10.1016/j.jprot.2017.07.017
[20]Jere SW, Houreld NN, Abrahamse H. Role of the PI3K/AKT (mTOR and GSK3β) signaling pathway and photobiomodulation in diabetic wound healing. Cytokine & Growth Factor Reviews. 2019, 50, 52-59. DOI: 10.1016/j.cytogfr.2019.03.001
[21]Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell & Bioscience. 2019, 9, 98. DOI: 10.1186/s13578-019-0362-3
[22]Xu Q, Hou WR, Zhao BR, Fan PX, Wang S, Wang L, et al. Mesenchymal stem cells lineage and their role in disease development. Molecular Medicine. 2024, 30(1), 207. DOI: 10.1186/s10020-024-00967-9
[23]Fani N, Moradi M, Zavari R, Parvizpour F, Soltani A, Arabpour Z, et al. Current advances in wound healing and regenerative medicine. Current Stem Cell Research & Therapy. 2024, 19(3), 277-291. DOI: 10.2174/1574888X18666230301140659
[24]Jackson GR, Knapik DM, Allende F, Kaplan DJ, Chahla J, Zaslav KR. Where orthobiologics started: what are mesenchymal stem cells? OrthoBiologics. 2025, 31-37. DOI: 10.1016/B978-0-12-822902-6.00013-1
[25]Wang WJ, Liu Y. Research progress on the immunomodulatory effect of mesenchymal stem cells on chronic periodontitis. Open Journal of Stomatology. 2024, 14(2), 64-71. DOI: 10.4236/ojst.2024.142006
[26]Mamun AA, Shao CX, Geng PW, Wang SH, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Frontiers in Immunology. 2024, 15, 1395479. DOI: 10.3389/fimmu.2024.1395479
[27]Lo Sicco C, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Translational Medicine. 2017, 6(3), 1018-1028. DOI: 10.1002/sctm.16-0363
[28]Zheng GP, Ge MH, Qiu GG, Shu Q, Xu JG. Mesenchymal stromal cells affect disease outcomes via macrophage polarization. Stem Cells International. 2015, 2015, 989473. DOI: 10.1155/2015/989473
[29]Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacology & Therapeutics. 2014, 143(2), 181-196. DOI: 10.1016/j.pharmthera.2014.02.013
[30]Castilla DM, Liu ZJ, Velazquez OC. Oxygen: implications for wound healing. Advances in Wound Care. 2012, 1(6), 225-230. DOI: 10.1089/wound.2011.0319
[31]Balaji S, King A, Crombleholme TM, Keswani SG. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Advances in Wound Care. 2013, 2(6), 283-295. DOI: 10.1089/wound.2012.0398
[32]Jo H, Brito S, Kwak BM, Park S, Lee MG, Bin BH. Applications of mesenchymal stem cells in skin regeneration and rejuvenation. International Journal of Molecular Sciences. 2021, 22(5), 2410. DOI: 10.3390/ijms22052410
[33]Freitas-Rodríguez S, Folgueras AR, López-Otín C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2017, 1864, 2015-2025. DOI: 10.1016/j.bbamcr.2017.05.007
[34]Ghasempour A, Dehghan H, Mahmoudi M, Lavi Arab F. Biomimetic scaffolds loaded with mesenchymal stem cells (MSCs) or MSC-derived exosomes for enhanced wound healing. Stem Cell Research & Therapy. 2024, 15(1), 406. DOI: 10.1186/s13287- 024-04012-8
[35]Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: A review. European Polymer Journal. 2019, 111, 134-151. DOI: 10.1016/j.eurpolymj.2018.12.019
[36]Farahani M, Shafiee A. Wound healing: from passive to smart dressings. Advanced Healthcare Materials. 2021, 10(16), 2100477. DOI: 10.1002/adhm.202100477
[37]Golchin A, Shams F, Basiri A, Ranjbarvan P, Kiani S, Sarkhosh-Inanlou R, et al. Combination therapy of stem cell-derived exosomes and biomaterials in the wound healing. Stem Cell Reviews and Reports. 2022, 18(6), 1892-1911. DOI: 10.1007/s12015-021-10309-5
[38]Wu FL, Lei NJ, Yang SY, Zhou JY, Chen MY, Chen C, et al. Treatment strategies for intrauterine adhesion: focus on the exosomes and hydrogels. Frontiers in Bioengineering and Biotechnology. 2023, 11, 1264006. DOI: 10.3389/fbioe.2023.1264006
[39]Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: delivery routes and engraftment, cell‐targeting strategies, and immune modulation. Stem Cells International. 2013, 732742. DOI: 10.1155/2013/732742
[40]Kumar A, Mazumder A, Bansal P, Tyagi PK, Kaur A. Integrating Precision Medicine in Diabetes Mellitus: Enhancing Wound Healing and Shaping Future Therapies. Recent Advances in Inflammation & Allergy Drug Discovery. 2024, 18. DOI: 10.2174/0127722708335238240920035556
[41]Shi Y, Inoue H, Wu JC, Yamanaka S. Induced Pluripotent Stem Cell Technology: A Decade of Progress. Nature Reviews Drug Discovery. 2017, 16(2), 115-130. DOI: 10.1038/nrd.2016.245
[42]Patel M, Yang SY. Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports. 2010, 6(3), 367-380. DOI: 10.1007/s12015-010-9123-8
[43]Mohite P, Puri A, Dave R, Budar A, Munde S, Ghosh SB, et al. Unlocking the Therapeutic Potential: Odyssey of Induced Pluripotent Stem Cells in Precision Cell Therapies. International Journal of Surgery. 2024, 110(10), 6432-6455. DOI: 10.1097/JS9.0000000000001892
[44]Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, et al. Harnessing the stem cell niche in regenerative medicine: innovative avenue to combat neurodegenerative diseases. International Journal of Molecular Sciences. 2024, 25(2), 993. DOI: 10.3390/ijms25020993
[45]Shamali MA. The Future of Personalized Medicine: iPS Cell Technology as a Game-Changer in Drug Discovery. Utrecht University. 2023.
[46]Martin PE, O'Shaughnessy EM, Wright CS, Graham A. The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro. Clinical Science. 2018, 132(15), 1629-1643. DOI: 10.1042/CS20171483
[47]Dash BC, Korutla L, Vallabhajosyula P, Hsia HC. Unlocking the potential of induced pluripotent stem cells for wound healing: the next frontier of regenerative medicine. Advances in Wound Care. 2022, 11(11), 622-638. DOI: 10.1089/wound.2021.0049
[48]Clayton ZE, Tan RP, Miravet MM, Lennartsson K, Cooke JP, Bursill CA, et al. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Bioscience Reports. 2018, 38(4), BSR20180563. DOI: 10.1042/BSR20180563
[49]Zhang WY, Huang X. Stem cell-based drug delivery strategy for skin regeneration and wound healing: potential clinical applications. Inflammation and Regeneration. 2023, 43(1), 33. DOI: 10.1186/s41232-023-00287-1
[50]Choudhury S, Surendran N, Das A. Recent advances in the induced pluripotent stem cell‐based skin regeneration. Wound Repair and Regeneration. 2021, 29(5), 697-710. DOI: 10.1111/wrr.12925
[51]Duan K, Dash BC, Sasson DC, Islam S, Parker J, Hsia HC. Human iPSC-derived vascular smooth muscle cells in a fibronectin functionalized collagen hydrogel augment endothelial cell morphogenesis. Bioengineering. 2021, 8(12), 223. DOI: 10.3390/bioengineering8120223
[52]Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews. Cancer. 2011, 11(4), 268-277. DOI: 10.1038/nrc3034
[53]Park S, Gwon Y, Khan SA, Jang KJ, Kim J. Engineering considerations of iPSC-based personalized medicine. Biomaterials Research. 2023, 27(1), 67. DOI: 10.1186/s40824-023-00382-x
[54]Charreau B. Secretome and tunneling nanotubes: a multilevel network for long range intercellular communication between endothelial cells and distant cells. International Journal of Molecular Sciences. 2021, 22(15), 7971. DOI: 10.3390/ijms22157971
[55]Hu P, Yang QX, Wang Q, Shi CS, Wang DL, Armato U, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burns & Trauma. 2019, 7, 38. DOI: 10.1186/s41038-019-0178-8
[56]Xu MX, Ji J, Jin DD, Wu Y, Wu T, Lin RJ, et al. The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): Intercellular shuttles and implications in human diseases. Genes & Diseases. 2023, 10(5), 1894-1907. DOI: 10.1016/j.gendis.2022.03.021
[57]Jiang YY, Xu X, Xiao L, Wang LH, Qiang S. The role of microRNA in the inflammatory response of wound healing. Frontiers in Immunology. 2022, 13, 852419. DOI: 10.3389/fimmu.2022.852419
[58]Ti DD, Hao HJ, Fu XB, Han WD. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Science China. Life Sciences. 2016, 59(12), 1305-1312. DOI: 10.1007/s11427-016-0240-4
[59]Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, Sunthar Raj N, Shamsuddin SA, Ng MH, et al. Cell secretomes for wound healing and tissue regeneration: Next generation acellular based tissue engineered products. Journal of Tissue Engineering. 2022, 13, 20417314221114273. DOI: 10.1177/20417314221114273
[60]Qiu XY, Liu J, Zheng CX, Su YT, Bao LL, Zhu B, et al. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Proliferation. 2020, 53(8), e12830. DOI: 10.1111/cpr.12830
[61]Golchin A, Hosseinzadeh S, Ardeshirylajimi A. The exosomes released from different cell types and their effects in wound healing. Journal of Cellular Biochemistry. 2018, 119(7), 5043-5052. DOI: 10.1002/jcb.26706
[62]Zhang JY, Guan JJ, Niu X, Hu GW, Guo SC, Li Q, et al. Exosomes released from human induced pluripotent stem cells- derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of Translational Medicine. 2015, 13, 49. DOI: 10.1186/s12967-015-0417-0
[63]Wang L, Hu L, Zhou X, Xiong ZH, Zhang CG, Shehada HMA, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Scientific Reports. 2018, 8(1), 7066. DOI: 10.1038/s41598-018-24991-y
[64]Zheng QY, Zhang SJ, Guo WZ, Li XK. The unique immunomodulatory properties of MSC-derived exosomes in organ transplantation. Frontiers in Immunology. 2021, 12, 659621. DOI: 10.3389/fimmu.2021.659621
[65]Guo ZY, Tang Y, Cheng YC. Exosomes as targeted delivery drug system: advances in exosome loading, surface functionalization and potential for clinical application. Current Drug Delivery. 2024, 21(4), 473-487. DOI: 10.2174/1567201819666220613150814
[66]Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, et al. Surface modification strategies in translocating nano- vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. Journal of Controlled Release. 2023, 363, 290-348. DOI: 10.1016/j.jconrel.2023.09.016
[67]Ding M, Wang C, Lu XL, Zhang CP, Zhou Z, Chen X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Analytical and Bioanalytical Chemistry. 2018, 410(16), 3805-3814. DOI: 10.1007/s00216-018- 1052-4
[68]Sancho-Albero M, Navascués N, Mendoza G, Sebastián V, Arruebo M, Martín-Duque P, et al. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. Journal of Nanobiotechnolog. 2019, 17(1), 16. DOI: 10.1186/s12951-018-0437-z
[69]Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials. 2019, 216, 119267. DOI: 10.1016/j.biomaterials.2019.119267
[70]Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. European Surgical Research. 2017, 58(1-2), 81-94. DOI: 10.1159/000454919
[71]Daikuara LY, Chen XF, Yue ZL, Skropeta D, Wood FM, Fear MW, et al. 3D bioprinting constructs to facilitate skin regeneration. Advanced Functional Materials. 2022, 32(3), 2105080. DOI: 10.1002/adfm.202105080
[72]Keshavarz R, Olsen S, Almeida B. Using biomaterials to improve mesenchymal stem cell therapies for chronic, nonhealing wounds. Bioengineering & Translational Medicine. 2024, 9(1), e10598. DOI: 10.1002/btm2.10598
[73]Nour S, Imani R, Chaudhry GR, Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches. Journal of Biomedical Materials Research. Part A. 2021, 109(4), 453-478.
DOI: 10.1002/jbm.a.37105
[74]Tan SH, Ngo ZH, Sci DB, Leavesley D, Liang K. Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing. Tissue Engineering. Part B, Reviews. 2022, 28(1), 160-181. DOI: 10.1089/ten.TEB.2020.0339
[75]Choi J, Lee EJ, Jang WB, Kwon SM. Development of biocompatible 3D-printed artificial blood vessels through multidimensional approaches. Journal of Functional Biomaterials. 2023, 14(10), 497. DOI: 10.3390/jfb14100497
[76]Dzobo K, Motaung KSCM, Adesida A. Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review. International Journal of Molecular Sciences. 2019, 20(18), 4628. DOI: 10.3390/ijms20184628
[77]Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise review: Bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Translational Medicine. 2017, 6(10), 1940-1948. DOI: 10.1002/sctm.17-0148
[78]Ong CS, Yesantharao P, Huang CY, Mattson G, Boktor J, Fukunishi T, et al. 3D bioprinting using stem cells. Pediatric Research. 2018, 83(1-2), 223-231. DOI: 10.1038/pr.2017.252
[79]Singh D, Singh D, Han SS. 3D Printing of Scaffold for Cell Delivery: Advances in Skin Tissue Engineering. Polymers. 2016, 8(1), 19. DOI: 10.3390/polym8010019
[80]Septiana WL, Pawitan JA. Potential use of organoids in Regenerative Medicine. Tissue Engineering and Regenerative Medicine. 2024, 21(8), 1125-1139. DOI: 10.1007/s13770-024-00672-y
[81]Ge JY, Wang Y, Li QL, Liu FK, Lei QK, Zheng YW. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ. 2024, 12, e18422. DOI: 10.7717/peerj.18422
[82]Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioactive Materials. 2022, 19, 50-74. DOI: 10.1016/j.bioactmat.2022.03.039
[83]Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Science Translational Medicine. 2012, 4(160), 160rv12. DOI: 10.1126/scitranslmed.3004890
[84]Wang WW, Liu P, Zhu WD, Li TW, Wang Y, Wang YJ, et al. Skin organoid transplantation promotes tissue repair with scarless in frostbite. Protein & Cell. 2025, 16(4), 240-259. DOI: 10.1093/procel/pwae055
[85]Choudhury S, Dhoke NR, Chawla S, Das A. Bioengineered msccxcr2 transdifferentiated keratinocyte-like cell-derived organoid potentiates skin regeneration through ERK1/2 and STAT3 signaling in diabetic wound. Cellular and Molecular Life Sciences. 2024, 81(1), 172. DOI: 10.1007/s00018-023-05057-3
[86]Zhang T, Sheng SH, Cai WH, Yang HJ, Li JM, Niu LY, et al. 3-D bioprinted human-derived skin organoids accelerate full- thickness skin defects repair. Bioactive Materials. 2024, 42, 257-269. DOI: 10.1016/j.bioactmat.2024.08.036
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alvin Jiunn Hieng Lu, Tan Zing Hern, Shaolong Yang, Khe Jia Siang, Juanyu Liu (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.