Exosome-Based Liquid Biopsy for Real-Time Diagnosis and Assessment in Acute Stroke and Its Subtypes
DOI:
https://doi.org/10.63623/y95rcx12Keywords:
Acute stroke subtypes, Ischemic stroke, Hemorrhagic stroke, Exosome, Liquid biopsy, Molecular biomarkersAbstract
Acute stroke remained a leading cause of death and disability worldwide, emphasizing the need for rapid and accurate diagnostic tools to enable timely intervention. Conventional imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI) provided structural insights but lacked real-time molecular-level information and were often time-consuming and resource-intensive. Despite advances in neuroimaging, rapid differentiation between the ischemic and hemorrhagic stroke in real time diagnosis remained a significant clinical challenge, mainly in resource-limited settings. Exosome-based liquid biopsy presented a minimally invasive alternative with the potential for rapid stroke subtype identification using molecular biomarkers. The present review explored the emerging role of exosome-based diagnostics in stroke differentiation, highlighting the modern technological advancements, clinical findings, key challenges, and future directions for integration into precision neurovascular care.
References
[1]Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 2021, 20(10), 795-820. DOI: 10.1016/S1474-4422(21)00252-0
[2]Lui F, Hui C, Suheb MZK, Patti L. Ischemic stroke. In: StatPearls [Internet]. StatPearls Publishing, 2025.
[3]Fugate JE, Rabinstein AA. Absolute and relative contraindications to IV rt-PA for acute ischemic stroke. The Neurohospitalist, 2015, 5(3), 110-121. DOI: 10.1177/1941874415578532
[4]Schneider AM, Neuhaus AA, Hadley G, Balami JS, Harston GW, DeLuca GC, et al. Posterior circulation ischaemic stroke diagnosis and management. Clinical Medicine. 2023, 23(3), 219-227. DOI: 10.7861/clinmed.2022-0499
[5]Halawa T, Baeesa S, Fadul MM, Badahdah AA, Enani M, Fathaddin AA, et al. The role of liquid biopsy in the diagnosis and prognosis of WHO grade 4 astrocytoma. Cureus, 2023, 15(6), e41221. DOI: 10.7759/cureus.41221
[6]Bang OY, Kim EH, Oh MJ, Yoo J, Oh GS, Chung JW, et al. Circulating extracellular-vesicle-incorporated microRNAs as potential biomarkers for ischemic stroke in patients with cancer. Journal of Stroke, 2023, 25(2), 251-265. DOI: 10.5853/jos.2022.02327
[7]Mukerjee N, Bhattacharya A, Maitra S, Kaur M, Ganesan S, Mishra S, et al. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Materials Today Bio, 2025, 101613. DOI: 10.1016/j.mtbio.2025.101613
[8]Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Du G. The biology, function, and applications of exosomes in cancer. Acta Pharmaceutica Sinica B, 2021, 11(9), 2783-2797. DOI: 10.1016/j.apsb.2021.01.001
[9]Poondla N, Babaeizad A, Sheykhhassan M, Barry CJ, Manoochehri H, Tanzadehpanah H, et al. Exosome-based therapies and biomarkers in stroke: Current advances and future directions. Experimental Neurology, 2025, 391, 115286. DOI: 10.1016/j.expneurol.2025.115286
[10]Lee EC, Ha TW, Lee DH, Hong DY, Park SW, Lee JY, et al. Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment. International Journal of Molecular Sciences. 2022, 23(15), 8367. DOI: 10.3390/ijms23158367
[11]Jayaseelan VP. Emerging role of exosomes as promising diagnostic tool for cancer. Cancer Gene Therapy. 2020, 27(6), 395-398. DOI: 10.1038/s41417-019-0136-4
[12]Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology. 2006, Chapter 3, Unit 3.22. DOI: 10.1002/0471143030.cb0322s30
[13]Payandeh Z, Tangruksa B, Synnergren J, Heydarkhan-Hagvall S, Nordin JZ, El Andaloussi S, et al. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Molecular Aspects of Medicine, 2024, 99, 101302. DOI: 10.1016/j.mam.2024.101302
[14]Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics, 2017, 7(3), 789-804. DOI: 10.7150/thno.18133
[15]Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Annals of Oncology, 2021, 32(4), 466-477. DOI: 10.1016/j.annonc.2021.01.074
[16]Noor J, Chaudhry A, Noor R, Batool S. Advancements and applications of liquid biopsies in oncology: A narrative review. Cureus, 2023, 15(7), e42731. DOI: 10.7759/cureus.42731
[17]Yadav R, Singh AV, Kushwaha S, Chauhan DS. Emerging role of exosomes as a liquid biopsy tool for diagnosis, prognosis & monitoring treatment response of communicable & non-communicable diseases. Indian Journal of Medical Research, 2024, 159(2), 163-180. DOI: 10.4103/ijmr.ijmr_2344_22
[18]Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab on a Chip, 2010, 10(4), 505-511. DOI: 10.1039/b916199f
[19]Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer's & Dementia, 2015, 11(6), 600-607. DOI: 10.1016/j.jalz.2014.06.008
[20]Lane RE, Korbie D, Hill MM, Trau M. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clinical and Translational Medicine, 2018, 7, 14. DOI: 10.1186/s40169-018-0192-7
[21]Street JM, Koritzinsky EH, Glispie DM, Star RA, Yuen PST. Urine exosomes: an emerging trove of biomarkers. Advances in Clinical Chemistry, 2017, 78, 103-122. DOI: 10.1016/bs.acc.2016.07.003
[22]Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Molecular Neurobiology, 2014, 49(1), 590-600. DOI: 10.1007/s12035-013-8544-1
[23]Slota JA, Booth SA. MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications. Noncoding RNA, 2019, 5(2), 35. DOI: 10.3390/ncrna5020035
[24]Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, et al. Extracellular vesicle proteins and microRNAs as biomarkers for traumatic brain injury. Frontiers in Neurology, 2020, 11, 663. DOI: 10.3389/fneur.2020.00663
[25]Kruger T, Lautenschlager J, Grosskreutz J, Rhode H. Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery. Proteomics - Clinical Applications, 2013, 7, 123-135. DOI: 10.1002/prca.201200067
[26]Kim KT. Lumbar puncture: considerations, procedure, and complications. Encephalitis, 2022, 2(4), 93. DOI: 10.47936/encephalitis.2022.00045
[27]Prasad S, Tyagi AK, Aggarwal BB. Detection of inflammatory biomarkers in saliva and urine: potential in diagnosis, prevention, and treatment for chronic diseases. Experimental Biology and Medicine, 2016, 241(8), 783-799. DOI: 10.1177/1535370216638770
[28]Celec P, Tóthová Ľ, Šebeková K, Podracká Ľ, Boor P. Salivary markers of kidney function__Potentials and limitations. Clinica Chimica Acta, 2016, 453, 28-37. DOI: 10.1016/j.cca.2015.11.028
[29]Duan P, Tan J, Miao Y, Zhang Q. Potential role of exosomes in the pathophysiology, diagnosis, and treatment of hypoxic diseases. American Journal of Translational Research, 2019, 11(3), 1184-1201.
[30]Jiang D, Gong F, Ge X, Lv C, Huang C, Feng S, et al. Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. Journal of Nanobiotechnology, 2020, 18, 1-20. DOI: 10.1186/s12951-020-00665-8
[31]Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, et al. Serum S100β: A noninvasive marker of blood__brain barrier function and brain lesions. Cancer, 2003, 97(11), 2806-2813. DOI: 10.1002/cncr.11409
[32]Osaid Z, Haider M, Hamoudi R, Harati R. Exosomes interactions with the blood–brain barrier: implications for cerebral disorders and therapeutics. International Journal of Molecular Sciences, 2023, 24(21), 15635. DOI: 10.3390/ijms242115635
[33]Batool SM, Hsia T, Beecroft A, Lewis B, Ekanayake E, Rosenfeld Y, et al. Extrinsic and intrinsic preanalytical variables affecting liquid biopsy in cancer. Cell Reports Medicine, 2023, 4(10), 101191. DOI: 10.1016/j.xcrm.2023.101196
[34]Yuana Y, Levels JH, Grootemaat AE, Sturk A, Nieuwland R. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. Journal of Extracellular Vesicles, 2015, 3, 23262. DOI: 10.3402/jev.v3.23262
[35]Simpson RJ, Lim JWE, Moritz RL, Mathivanan S. Exosomes: Proteomic insights and diagnostic potential. Expert Review of Proteomics, 2009, 6(3), 267-283. DOI: 10.1586/epr.09.17
[36]Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8), E968-E977. DOI: 10.1073/pnas.1521230113
[37]Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles, 2015, 4, 27031. DOI: 10.3402/jev.v4.27031
[38]Rider MA, Hurwitz SN, Meckes DG Jr. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Scientific Reports, 2016, 6, 23978. DOI: 10.1038/srep23978
[39]Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods in Molecular Biology, 2015, 1295, 179-209. DOI: 10.1007/978-1-4939-2550-6_15
[40]Tayebi M, Zhou Y, Tripathi P, Chandramohanadas R, Ai Y. Exosome purification and analysis using a facile microfluidic hydrodynamic trapping device. Analytical Chemistry, 2020, 92(14), 10733-10742. DOI: 10.1021/acs.analchem.0c02006
[41]Wu Y, Wang Y, Lu Y, Luo X, Huang Y, Xie T, et al. Microfluidic technology for the isolation and analysis of exosomes. Micromachines, 2022, 13(10), 1571. DOI: 10.3390/mi13101571
[42]Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C. Microfluidic technology for clinical applications of exosomes. Micromachines, 2019, 10(6), 392. DOI: 10.3390/mi10060392
[43]Kaddour H, Tranquille M, Okeoma CM. The past, the present, and the future of the size exclusion chromatography in extracellular vesicles separation. Viruses, 2021, 13(11), 2272. DOI: 10.3390/v13112272
[44]Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnology Advances, 2022, 54, 107814. DOI: 10.1016/j.biotechadv.2021.107814
[45]Liga A, Vliegenthart ADB, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M. Exosome isolation: A microfluidic road-map. Lab on a Chip, 2015, 15(11), 2388-2394. DOI: 10.1039/C5LC00240K
[46]Lu Y, Ye L, Jian X, Yang D, Zhang H, Tong Z, et al. Integrated microfluidic system for isolating exosome and analyzing protein marker PD-L1. Biosens Bioelectron, 2022, 204, 113879. DOI: 10.1016/j.bios.2022.113879
[47]Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduction and Targeted Therapy, 2020, 5(1), 144. DOI: 10.1038/s41392-020-00318-8
[48]Kamalian S, Lev MH. Stroke imaging. Radiologic Clinics of North America, 2019, 57(4), 717-732. DOI: 10.1016/j.rcl.2019.02.001
[49]Lin B, Lei Y, Wang J, Zhu L, Wu Y, Zhang H, et al. Microfluidic-based exosome analysis for liquid biopsy. Small Methods, 2021, 5(3), 2001131. DOI: 10.1002/smtd.202001131
[50]Chen J, Chopp M. Exosome therapy for stroke. Stroke, 2018, 49(5), 1083-1090. DOI: 10.1161/STROKEAHA.117.018292.
[51]Tiedt S, Prestel M, Malik R, Schieferdecker N, Duering M, Kautzky V, et al. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circulation Research, 2017, 121(8), 970-980. DOI: 10.1161/CIRCRESAHA.117.311572
[52]Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One, 2016, 11(9), e0163645. DOI: 10.1371/journal.pone.0163645
[53]Bhardwaj A, Srivastava MP, Wilson PV, Mehndiratta A, Vishnu VY, Garg R. Machine learning based reanalysis of clinical scores for distinguishing between ischemic and hemorrhagic stroke in low resource setting. Journal of Stroke and Cerebrovascular Diseases, 2022, 31(9), 106638. DOI: 10.1101/2022.03.03.22271885
[54]Foerch C, Curdt I, Yan B, Dvorak F, Hermans M, Berkefeld J, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. Journal of Neurology, Neurosurgery & Psychiatry, 2006, 77(2), 181-184. DOI: 10.1136/jnnp.2005.074823
[55]Tsukahara A, Hosokawa T, Nishioka D, Kotani T, Ishida S, Takeuchi T, et al. Neuron-specific enolase level is a useful biomarker for distinguishing amyotrophic lateral sclerosis from cervical spondylotic myelopathy. Scientific Reports, 2021, 11(1), 22827. DOI: 10.1038/s41598-021-02310-2.
[56]Yousif G, Qadri S, Haik M, Haik Y, Parray AS, Shuaib A. Circulating exosomes of neuronal origin as potential early biomarkers for development of stroke. Molecular Diagnosis & Therapy, 2021, 25, 163-180. DOI: 10.1007/s40291-020-00508-0
[57]Katsanos AH, Makris K, Stefani D, Koniari K, Gialouri E, et al. Plasma glial fibrillary acidic protein in the differential diagnosis of intracerebral hemorrhage. Stroke, 2017, 48(9), 2586-2588. DOI: 10.1161/STROKEAHA.117.018409
[58]Zuo M, He Y, Chen L, Li G, Liu Q, Hou X, et al. Increased neuron-specific enolase level predicts symptomatic intracranial hemorrhage in patients with ischemic stroke treated with endovascular treatment. World Neurosurg, 2023, 180, e302-e308. DOI: 10.1016/j.wneu.2023.09.065
[59]Ozansoy M, Mikati H, Velioglu HA, Yulug B. Exosomes: a missing link between chronic systemic inflammation and Alzheimer’s disease? Biomedicine & Pharmacotherapy, 2023, 159, 114161. DOI: 10.1016/j.biopha.2022.114161
[60]Wang Y, Ma H, Zhang X, Xiao X, Yang Z. The increasing diagnostic role of exosomes in inflammatory diseases to leverage the therapeutic biomarkers. Journal of Inflammation Research, 2024, 5005-5024. DOI: 10.2147/JIR.S475102
[61]Kandimalla R, Saeed M, Tyagi N, Gupta RC, Aqil F. Exosome-based approaches in the management of Alzheimer’s disease. Neuroscience & Biobehavioral Reviews, 2023, 144, 104974. DOI: 10.1016/j.neubiorev.2023.104974
[62]Aref HMA, Fahmy NA, Khalil SH, Ahmed MF, ElSadek A, Abdulghani MO. Role of interleukin-6 in ischemic stroke outcome. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 2020, 56, 12. DOI: 10.1186/s41983-019-0121-8
[63]He C, Liu R, Fan Z, Li Y, Yang M, Hou W, et al. Microglia in the pathophysiology of hemorrhagic stroke and the relationship between microglia and pain after stroke: a narrative review. Pain and Therapy, 2021, 10, 927-939. DOI: 10.1007/s40122-021-00288-3
[64]Kanninen KM, Bister N, Koistinaho J, Malm T. Exosomes as new diagnostic tools in CNS diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2016, 1862(3), 403-410. DOI: 10.1016/j.bbadis.2015.09.020
[65]Gao C, Gong ZT, Wang D, Huang JH, Qian Y, Nie M, et al. Hematoma-derived exosomes of chronic subdural hematoma promote abnormal angiogenesis and inhibit hematoma absorption through miR-144-5p. Aging, 2019, 11, 12147-12164. DOI: 10.18632/aging.102550
[66]Vedpathak S, Sharma A, Palkar S, Bhatt VR, Patil VC, Kakrani AL, et al. Platelet derived exosomes disrupt endothelial cell monolayer integrity and enhance vascular inflammation in dengue patients. Frontiers in Immunology, 2024, 14, 1285162. DOI: 10.3389/fimmu.2023.1285162
[67]Ciaccio AM, Tuttolomondo A. Exosomal miRNAs as biomarkers of ischemic stroke. Brain Sciences, 2023, 13(12), 1647. DOI: 10.3390/brainsci13121647
[68]Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ. MicroRNA-based therapeutics in central nervous system injuries. The Journal of Cerebral Blood Flow & Metabolism, 2018, 38(7), 1125-1148. DOI: 10.1177/0271678X18773871
[69]Aderinto N, Olatunji G, Kokori E, Sanker V, Yusuf IA, Adefusi TO, et al. MiR-210 in ischaemic stroke: Biomarker potential, challenges and future perspectives. European Journal of Medical Research, 2024, 29(1), 432. DOI: 10.1186/s40001-024-02029-6
[70]Xu W, Gao L, Zheng J, Li T, Shao A, Reis C, et al. The roles of microRNAs in stroke: possible therapeutic targets. Cell Transplantation, 2018, 27(12), 1778-1788. DOI: 10.1177/0963689718773361
[71]Adams Jr HP, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology, 1999, 53(1), 126-126. DOI: 10.1212/WNL.53.1.126
[72]Zhou X, Qi L. MiR-124 is downregulated in serum of acute cerebral infarct patients and shows diagnostic and prognostic value. Clinical and Applied Thrombosis/Hemostasis, 2021, 27, 10760296211035446. DOI: 10.1177/10760296211035446
[73]Liang Y, Chen J, Chen Y, Tong Y, Li L, Xu Y, et al. Advances in the detection of biomarkers for ischemic stroke. Frontiers in Neurology, 2025, 16, 1488726. DOI: 10.3389/fneur.2025.1488726
[74]Anwar L, Ahmad E, Imtiaz M, Ahmad B, Ali MA, Imtiaz M, et al. Biomarkers for early detection of stroke: A systematic review. Cureus, 2024, 16(10), e70624. DOI: 10.7759/cureus.70624
[75]Wang JL, Zhu Y, Jin F, Tang L, He ZW, He ZY. Differential expression of circulating microRNAs in blood and haematoma samples from patients with intracerebral haemorrhage. Journal of International Medical Research, 2016, 44(3), 419-432. DOI: 10.1177/0300060516630852
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Advances in Modern Biomedicine

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.