Gene Therapy Approaches in Hematological Malignancies: Current Strategies and Future Directions
DOI:
https://doi.org/10.63623/c718ab40Keywords:
Hematological malignancies, Gene therapy, CRISPR-Cas9, CAR-T therapies, Gene deliveryAbstract
Hematological malignancies, such as leukemia, lymphoma, and myeloma, are cancers originating in the bone marrow and lymphatic system, marked by the uncontrolled growth of blood cells. Gene therapy offers a revolutionary treatment approach by directly targeting genetic mutations and boosting the body’s anti-tumor immune responses. This study aims to provide a comprehensive overview of hematological cancers and explores the current and emerging gene therapy strategies that are being investigated for their treatment. It also provides a detailed overview of gene delivery systems, their principles, types, and recent advancements in gene therapy as a potential treatment strategy. It provides a detailed analysis of gene delivery systems, therapeutic modalities, and clinical applications, with a focus on CAR-T, CRISPR-Cas9, and RNA interference (RNAi) technologies. It highlights recent advances in gene delivery, including viral and non-viral vector systems, along with advanced techniques like gene editing and gene silencing. Special attention is given to cutting-edge techniques such as CRISPR-Cas9, CAR-T therapies, and RNA interference. The article concludes by discussing current hurdles and prospects of gene therapy, emphasizing its immense potential to transform the treatment for hematological cancer.
References
[1]Zhang N, Wu J, Wang Q, Liang Y, Li X, Chen G, et al. Global burden of hematologic malignancies and evolution patterns over the past 30 years. Blood Cancer Journal, 2023, 13, 82. DOI: 10.1038/s41408-023-00853-3
[2]Drexler H, Matsuo Y. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia__lymphoma. Leukemia, 2000, 14(5), 777-782. DOI: 10.1038/sj.leu.2401778
[3]Stone NN, Stock RG, Unger P. Intermediate term biochemical-free progression and local control following 125Iodine brachytherapy for prostate cancer. Journal of Urology, 2005, 173(3), 803-807. DOI: 10.1097/01.ju.0000152558.63996.29
[4]Yu S, Huang F, Wang Y, Xu Y, Yang T, Fan Z, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: a prospective multicentre cohort study. Leukemia, 2020, 34(5), 1433-1443. DOI: 10.1038/s41375-019-0686-3
[5]Singh R, Shaik S, Negi BS, Rajguru JP, Patil PB, Parihar AS, et al. Non-Hodgkin's lymphoma: a review. International Journal of Family Medicine and Primary Care, 2020, 9(4), 1834-1840. DOI: 10.4103/jfmpc.jfmpc_1037_19
[6]Rajkumar SV, Kumar S, Lonial S, Mateos MV. Smoldering multiple myeloma current treatment algorithms. Blood Cancer Journal, 2022, 12, 129. DOI: 10.1038/s41408-022-00719-0
[7]Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW. Clinical development of gene therapy: results and lessons from recent successes. Molecular Therapy Methods & Clinical Development, 2016, 3, 16034. DOI: 10.1038/mtm.2016.34
[8]Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science, 2018, 359(6372), eaan4672. DOI: 10.1126/science.aan4672
[9]Mali S. Delivery systems for gene therapy. Indian Journal of Human Genetics, 2013, 19(1), 3-8. DOI: 10.4103/0971-6866.112870
[10]Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, et al. Pathobiochemistry of aging and neurodegeneration: deregulation of NAD+ metabolism in brain cells. Biomolecules, 2024, 14(12), 1556. DOI: 10.3390/biom14121556
[11]Niazi SK. The dawn of in vivo gene editing era: a revolution in the making. Biologics, 2023, 3(4), 253-295. DOI: 10.3390/biologics3040014
[12]Naldini L. Gene therapy returns to centre stage. Nature, 2015, 526(7573), 351-360. DOI: 10.1038/nature15818
[13]Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 2020, 5(1), 1. DOI: 10.1038/s41392-019-0089-y
[14]Omoteso OA, Fadaka AO, Walker RB, Khamanga SM. Innovative strategies for combating multidrug-resistant tuberculosis: advances in drug delivery systems and treatment. Microorganisms, 2025, 13(4), 722. DOI: 10.3390/microorganisms13040722
[15]Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation__a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Frontiers in Immunology, 2023, 14, 1127704. DOI: 10.3389/fimmu.2023.1127704
[16]Zarogoulidis P, Darwiche K, Sakkas A, Yarmus L, Huang H, Li Q, et al. Suicide gene therapy for cancer-current strategies. Journal of Genetic Syndromes & Gene Therapy, 2013, 4, 16849. DOI: 10.4172/2157-7412.1000139
[17]Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduction and Targeted Therapy, 2023, 8(1), 156. DOI: 10.1038/s41392-023-01407-6
[18]Watanabe S, Takagi A, Yuba E, Kojima C, Dei N, Matsumoto A, et al. In vivo transfection of cytokine genes into tumor cells using a synthetic vehicle promotes antitumor immune responses. Federation of American Societies for Experimental Biology, 2023, 37(11), e23228. DOI: 10.1096/fj.202202036R
[19]Evert LS, Potupchik TV, Veselova OF, Svetlakova IS, Panchenko VA, Kuzhasheva RR, et al. Genome editing in neurodegenerative diseases: risk analysis, technological challenges, and prospects for clinical application. Molecular Medicine, 2025, 23(2), 21-31. DOI: 10.29296/24999490-2025-02-03
[20]Bilal M, Geng J, Chen L, García-Caparros P, Hu T. Genome editing for grass improvement and future agriculture. Horticulture Research, 2025, 12(2), uhae293. DOI: 10.1093/hr/uhae293
[21]Labbé RP, Vessillier S, Rafiq QA. Lentiviral vectors for T cell engineering: clinical applications, bioprocessing and future perspectives. Viruses, 2021, 13(8), 1528. DOI: 10.3390/v13081528
[22]Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. The New England Journal of Medicine, 2018, 378(5), 439-448. DOI: 10.1056/NEJMoa1709866
[23]Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-cell-based gene therapy for cancers: new perspectives, challenges, and clinical developments. Frontiers in Immunology, 2022, 13, 925985. DOI: 10.3389/fimmu.2022.925985
[24]Wang J, Li T, Zhou M, Hu Z, Zhou X, Zhou S, et al. TALENs-mediated gene disruption of FLT3 in leukemia cells: using genome-editing approach for exploring the molecular basis of gene abnormality. Scientific Reports, 2015, 5, 18454. DOI: 10.1038/srep18454
[25]Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes & Diseases, 2017, 4(2), 43-63. DOI: 10.1016/j.gendis.2017.04.001
[26]Zheng Y, Kng J, Yang C, Hedrick JL, Yang YY. Cationic polymer synergizing with chemotherapeutics and re-purposing antibiotics against cancer cells. Biomaterials Science, 2021, 9(6), 2174-2182. DOI: 10.1039/d0bm02155e
[27]Moretti M, Liberati AM, Rigacci L, Puccini B, Pulsoni A, Gini G, et al. Brentuximab vedotin and bendamustine produce long-term clinical benefit in patients with relapsed or refractory classical Hodgkin lymphoma: a multicenter real-life experience. Clinical Lymphoma, Myeloma & Leukemia, 2022, 22(3), 198-204. DOI: 10.1016/j.clml.2021.09.018
[28]Lopes R, Prasad MK. Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Frontiers in Bioengineering and Biotechnology, 2024, 11, 1339189. DOI: 10.3389/fbioe.2023.1339189
[29]Neelapu SS, Jacobson CA, Ghobadi A, Miklos DB, Lekakis LJ, Oluwole OO, et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood, 2023, 141(19), 2307-2315. DOI: 10.1182/blood.2022018893
[30]Jyotsana N, Sharma A, Chaturvedi A, Scherr M, Kuchenbauer F, Sajti L, et al. RNA interference efficiently targets human leukemia driven by a fusion oncogene in vivo. Leukemia, 2018, 32(1), 224-226. DOI: 10.1038/leu.2017.269
[31]Cao JZ, Liu H, Wickrema A, Godley LA. HIF-1 directly induces TET3 expression to enhance 5-hmC density and induce erythroid gene expression in hypoxia. Blood Advances, 2020, 4(13), 3053-3062. DOI: 10.1182/bloodadvances.2020001535
[32]Zhang J, Hu Y, Yang J, Li W, Zhang M, Wang Q, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature, 2022, 609(7926), 369-374. DOI: 10.1038/s41586-022-05140-y
[33]Zeng J, Liang X, Duan L, Tan F, Chen L, Qu J, et al. Targeted disruption of the BCR-ABL fusion gene by Cas9/dual-sgRNA inhibits proliferation and induces apoptosis in chronic myeloid leukemia cells. Acta Biochimica et Biophysica Sinica, 2024, 56(4), 525-537. DOI: 10.3724/abbs.2023280
[34]Sheikh S, Migliorini D, Lang N. CAR T-based therapies in lymphoma: a review of current practice and perspectives. Biomedicines, 2022, 10(8), 1960. DOI: 10.3390/biomedicines10081960
[35]Braun T, Kuschel F, Reiche K, Merz M, Herling M. Emerging T-cell lymphomas after CAR T-cell therapy. Leukemia, 2025, 39(6), 1337-1341. DOI: 10.1038/s41375-025-02574-x
[36]Martínez-Martín S, Soucek L. MYC inhibitors in multiple myeloma. Cancer Drug Resistance, 2021, 4(4), 842-865. DOI: 10.20517/cdr.2021.55
[37]Xue Y, Jiang H, Li T, Tian XL, Miao ZL, Zong ZY, et al. Inhibition of tumor growth using a conjugated nanobody that specifically targets c-MYC. Oncogene, 2025. DOI: 10.1038/s41388-025-03486-x
[38]Guo R, Li W, Li Y, Li Y, Jiang Z, Song Y. Generation and clinical potential of functional T lymphocytes from gene-edited pluripotent stem cells. Experimental Hematology & Oncology, 2022, 11(1), 27. DOI: 10.1186/s40164-022-00285-y
[39]Pinto V, Bergantim R, Caires HR, Seca H, Guimarães JE, Vasconcelos MH. Multiple myeloma: available therapies and causes of drug resistance. Cancers (Basel), 2020, 12(2), 407. DOI: 10.3390/cancers12020407
[40]Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, et al. Zinc-finger proteins in health and disease. Cell Death Discovery, 2017, 3, 17071. DOI: 10.1038/cddiscovery.2017.71
[41]Liu Q, Ling J, Li Z, Bi L. Advances in lymphoma biomarkers research based on proteomics technology. Oncology Reports, 2025, 54(3), 108. DOI: 10.3892/or.2025.8941
[42]Ramberger E, Sapozhnikova V, Ng YLD, Dolnik A, Ziehm M, Popp O, et al. The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities. Nature Cancer, 2024, 5(8), 1267-1284. DOI: 10.1038/s43018-024-00784-3
[43]Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, et al. Chimeric antigen receptor T-cells: an overview of concepts, applications, limitations, and proposed solutions. Frontiers in Bioengineering and Biotechnolog, 2022, 10, 797440. DOI: 10.3389/fbioe.2022.797440
[44]Papadouli I, Mueller-Berghaus J, Beuneu C, Ali S, Hofner B, Petavy F, et al. EMA review of axicabtagene ciloleucel (Yescarta) for the treatment of diffuse large B-cell lymphoma. Oncologist, 2020, 25(10), 894-902. DOI: 10.1634/theoncologist.2019-0646
[45]O'Reilly MA, Wilson W, Burns D, Kuhnl A, Seymour F, Uttenthal B, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in the United Kingdom: a real-world intention-to-treat analysis. Hemasphere, 2024, 8(6), e87. DOI: 10.1002/hem3.87
[46]Lovell A. Brexucabtagene autoleucel (Tecartus™). Oncology Times, 2022, 44(16), 10. DOI: 10.1097/01.COT.0000872268.55217.67
[47]Weinstein B, Muresan B, Solano S, de Macedo AV, Lee Y, Su YC, et al. Efficacy and safety of innovative experimental CAR T-cells versus axicabtagene ciloleucel (Yescarta) for relapsed/refractory large B-cell lymphoma: a MAIC and systematic review. INNOVATIONS in pharmacy, 2021, 12(4), 10.24926/iip.v12i4.4345. DOI: 10.24926/iip.v12i4.4345
[48]Oluwole OO, Forcade E, Muñoz J, de Guibert S, Vose JM, Bartlett NL, et al. Long-term outcomes of patients with large B-cell lymphoma treated with axicabtagene ciloleucel and prophylactic corticosteroids. Bone Marrow Transplantation, 2024;59:366-372. DOI: 10.1038/s41409-023-02169-z
[49]Mackeh R, Marr AK, Fadda A, Kino T. C2H2-type zinc finger proteins: evolutionarily old and new partners of the nuclear hormone receptors. Nuclear receptor signaling, 2018, 15, 1550762918801071. DOI: 10.1177/1550762918801071
[50]Kohn DB, Chen YY, Spencer MJ. Successes and challenges in clinical gene therapy. Gene Therapy, 2023, 30, 738-746. DOI: 10.1038/s41434-023-00390-5
[51]Mousavi SE, Ilaghi M, Aslani A, et al. A population-based study on incidence trends of myeloma in the United States over 2000-2020. Scientific Reports, 2023, 13(1), 20705. DOI: 10.1038/s41598-023-47906-y
[52]Ansah EO. Ethical challenges and controversies in the practice and advancement of gene therapy. Advances in Cell and Gene Therapy, 2022, 2022(1), 1015996. DOI: 10.1155/2022/1015996
[53]Tucci F, Consiglieri G, Cossutta M, Bernardo ME. Current and future perspective in hematopoietic stem progenitor cell-gene therapy for inborn errors of metabolism. Hemasphere, 2023, 7(10), e953. DOI: 10.1097/HS9.0000000000000953
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Imran Khan Yousafzai, Aqsa Mehreen, Nadia Noreen, Nayab Ahsan, Shanzay Malik, Anza Mnahal, Sanam Rehman, Hawaida Ahmad, Khadija Tariq (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.